Description: Mathematical Analysis of Machine Learning Algorithms by Tong Zhang This self-contained textbook introduces students and researchers of AI to the key mathematical concepts and techniques necessary to learn and analyze machine learning algorithms. Readers will gain the technical knowledge needed to understand research papers in theoretical machine learning, without much difficulty. FORMAT Hardcover CONDITION Brand New Publisher Description The mathematical theory of machine learning not only explains the current algorithms but can also motivate principled approaches for the future. This self-contained textbook introduces students and researchers of AI to the main mathematical techniques used to analyze machine learning algorithms, with motivations and applications. Topics covered include the analysis of supervised learning algorithms in the iid setting, the analysis of neural networks (e.g. neural tangent kernel and mean-field analysis), and the analysis of machine learning algorithms in the sequential decision setting (e.g. online learning, bandit problems, and reinforcement learning). Students will learn the basic mathematical tools used in the theoretical analysis of these machine learning problems and how to apply them to the analysis of various concrete algorithms. This textbook is perfect for readers who have some background knowledge of basic machine learning methods, but want to gain sufficient technical knowledge to understand research papers in theoretical machine learning. Author Biography Tong Zhang is Chair Professor of Computer Science and Mathematics at the Hong Kong University of Science and Technology, where his research focuses on machine learning, big data, and their applications. A Fellow of the IEEE, the American Statistical Association, and the Institute of Mathematical Statistics, Zhang has served as Chair or Area chair at major machine learning conferences such as NeurIPS, ICML, and COLT, and he has been an associate editor for several top machine learning publications including PAMI, JMLR, and Machine Learning. Table of Contents 1. Introduction; 2. Basic probability inequalities for sums of independent random variables; 3. Uniform convergence and generalization analysis; 4. Empirical covering number analysis and symmetrization; 5. Covering number estimates; 6. Rademacher complexity and concentration inequalities; 7. Algorithmic stability analysis; 8. Model selection; 9. Analysis of kernel methods; 10. Additive and sparse models; 11. Analysis of neural networks; 12. Lower bounds and minimax analysis; 13. Probability inequalities for sequential random variables; 14. Basic concepts of online learning; 15. Online aggregation and second order algorithms; 16. Multi-armed bandits; 17. Contextual bandits; 18. Reinforcement learning; A. Basics of convex analysis; B. f-Divergence of probability measures; References; Author index; Subject index. Review This graduate-level text gives a thorough, rigorous and up-to-date treatment of the main mathematical tools that have been developed for the analysis and design of machine learning methods. It is ideal for a graduate class, and the exercises at the end of each chapter make it suitable for self-study. An excellent addition to the literature from one of the leading researchers in this area, it is sure to become a classic. Peter Bartlett, University of California, BerkeleyThis book showcases the breadth and depth of mathematical ideas in learning theory. The author has masterfully synthesized techniques from the many disciplines that have contributed to this subject, and presented them in an accessible format that will be appreciated by both newcomers and experts alike. Readers will learn the tools-of-the-trade needed to make sense of the research literature and to express new ideas with clarity and precision. Daniel Hsu, Columbia UniversityTong Zhang shares in this book his deep and broad knowledge of machine learning, writing an impressively comprehensive and up-to-date reference text, providing a rigorous and rather advanced treatment of the most important topics and approaches in the mathematical study of machine learning. As an authoritative reference and introduction, his book will be a great asset to the field. Robert Schapire, Microsoft ResearchThis book gives a systematic treatment of the modern mathematical techniques that are commonly used in the design and analysis of machine learning algorithms. Written by a key contributor to the field, it is a unique resource for graduate students and researchers seeking to gain a deep understanding of the theory of machine learning. Shai Shalev-Shwartz, Hebrew University of Jerusalem Promotional Introduction to the mathematical foundation for understanding and analyzing machine learning algorithms for AI students and researchers. Details ISBN1009098381 Author Tong Zhang Pages 479 Publisher Cambridge University Press Year 2023 ISBN-10 1009098381 ISBN-13 9781009098380 Format Hardcover Imprint Cambridge University Press Place of Publication Cambridge Country of Publication United Kingdom AU Release Date 2023-07-31 NZ Release Date 2023-07-31 Illustrations Worked examples or Exercises Alternative 9781009093057 DEWEY 006.31 Publication Date 2023-08-10 Audience Postgraduate, Research & Scholarly UK Release Date 2023-08-10 We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:143095559;
Price: 120.23 AUD
Location: Melbourne
End Time: 2024-11-20T05:12:31.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
Format: Hardcover
ISBN-13: 9781009098380
Author: Tong Zhang
Type: Does not apply
Book Title: Mathematical Analysis of Machine Learning Algorithms
Language: Does not apply