Description: Accelerate Deep Learning Workloads with Amazon SageMaker by Vadim Dabravolski Estimated delivery 3-12 business days Format Paperback Condition Brand New Description Deep learning is one of the most cutting-edge fields in the AI space currently and most AI-powered applications currently utilize deep learning techniques. This book will teach you both software and hardware aspects used to run deep learning models at scale using Amazon SageMaker. Publisher Description Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance.Key FeaturesExplore key Amazon SageMaker capabilities in the context of deep learningTrain and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloadsCover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMakerBook DescriptionOver the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads.By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker.What you will learnCover key capabilities of Amazon SageMaker relevant to deep learning workloadsOrganize SageMaker development environmentPrepare and manage datasets for deep learning trainingDesign, debug, and implement the efficient training of deep learning modelsDeploy, monitor, and optimize the serving of DL modelsWho this book is forThis book is relevant for ML engineers who work on deep learning model development and training, and for Solutions Architects who design and optimize end-to-end deep learning workloads. It assumes familiarity with the Python ecosystem, principles of Machine Learning and Deep Learning, and basic knowledge of the AWS cloud. Author Biography Vadim Dabravolski is a Solutions Architect and Machine Learning Engineer. He has over 15 years of career in software engineering, specifically data engineering and machine learning. During his tenure in AWS, Vadim helped many organizations to migrate their existing ML workloads or engineer new workloads for the Amazon SageMaker platform. Vadim was involved in the development of Amazon SageMaker capabilities and adoption of them in practical scenarios. Currently, Vadim works as an ML engineer, focusing on training and deploying large NLP models. The areas of interest include engineering distributed model training and evaluation, complex model deployments use cases, and optimizing inference characteristics of DL models. Details ISBN 1801816441 ISBN-13 9781801816441 Title Accelerate Deep Learning Workloads with Amazon SageMaker Author Vadim Dabravolski Format Paperback Year 2022 Pages 278 Publisher Packt Publishing Limited GE_Item_ID:138934832; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 59.92 USD
Location: Fairfield, Ohio
End Time: 2024-12-12T04:04:42.000Z
Shipping Cost: N/A USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9781801816441
Book Title: Accelerate Deep Learning Workloads with Amazon SageMaker
Publisher: Packt Publishing, The Limited
Publication Year: 2022
Subject: Intelligence (Ai) & Semantics, Natural Language Processing, Enterprise Applications / General
Number of Pages: 278 Pages
Publication Name: Accelerate Deep Learning Workloads with Amazon SageMaker : Train, Deploy, and Scale Deep Learning Models Effectively Using Amazon SageMaker
Language: English
Type: Textbook
Author: Vadim Dabravolski
Subject Area: Computers
Format: Trade Paperback